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radiation field solutions from the vacuum 
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Sektion Physik, Friedrich-Schiller-Universitat Jena, DDR-69 JENA, Max-Wien-Platz 1, 
East Germany 

Received 11 July 1978, in final form 26 September 1978 

Abstract. A method is proposed to generate solutions of Einstein's field equations for pure 
radiation fields from the vacuum. The method applies to all algebraically special diverging 
vacuum metria, reducing the field equations to a single partial differential equation for one 
real function. This equation becomes linear if additional assumptions concerning the 
vacuum metric are made. Several classes of explicit solutions have been found. 

1. The problem 

In this paper we consider algebraically special pure radiation fields. More precisely, we 
are interested in exact solutions of Einstein's equations 

RQb = K4'k&br k,k" = 0,  42  > 0 ,  ( 1 . 1 )  

(&, Ricci tensor, K gravitational constant) which have the following properties: The 
null vector k" is (i) a multiple eigenvector of the Weyl tensor and is (ii) geodetic and 
shear free, but diverging: 

The method we shall develop applies also to all solutions with a non-twisting null 
congruence, but as in that case it is more or less trivial to generate radiation field 
solutions we shall concentrate on the twisting case: 

It has been shown (Robinson and Robinson 1969; Robinson, Schild and Strauss 
1969) that with the assumptions stated above the metric can be written in the form 

ds2 = 2w1w2-2w3w4 

w 1 = W 2 =  -dl /pP(l ,  S; U )  

w 3 =  - k, dxn = d u  + L( l ,  S; U )  d + L d f  

w 4  = dr  + W ( f ,  

(1 .4 )  

r, U )  d + W df + H (l, E r, U)" 
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with 

p - l =  - (e +iw)-’ = - (r +iZ), . 
H = -r(lnP),,-[m(l, r, u)r+MZ]/ ( r2+Z2)+K/2  

K = 2P2 Re[a(s In P-L,,)], w = p - l ~ , ,  + iaZ 

a = a, -La,, 

2 i ~  = P’(ZL - aE) 

- - a = a,- - La, 

and 

The remaining field equations then read 

(3L,, -a)(m + iM)  = 0 

p4(a - 2 ~ , ,  + 2a ln p)aI - P ~ [ P - ~ ( ~  + MI],, = n2(5,  f, u)/2 

I =Z(Z In P-L,,) + (5 In P-L,,)’, 

(1.7) 

(1.8) 

where n 2  is related to the radiation field (represented by 4’) by 

4’= n 2 G  E U)PP. (1.9) 

The main content of the equations (1.4H1.9) can be summarised as follows: If one 
takes the affine parameter r of the null congruence as the coordinate x 3 ,  k ” =  
(0, 0, 1, 0), then two complex coordinates x 1  = 5, x 2  = f and the real (retarded time) 
coordinate x 4  = U can be introduced, as in (1.4). Equations ( l S ) ,  (1.6), (1.8) and (1.9) 
show that the radial (r) dependence of all metric functions and of the radiation field can 
be explicitly determined, and that all remaining functions of 5, r a n d  U can be given in 
terms of the two real functions P(5, U )  and of the complex function 
L(5, U ) .  The field equation (1.8) can be considered as giving the definition of n 2  in 
terms of P, m and L, the essential condition being that the left hand side must be 
positive. Thus the complex equation (1.7), together with the definition (1.6) of M in 
terms of P and L, is the field equation for the case considered here. To find an exact 
solution means to find functions P, m and L which satisfy the system (1.6)-(1.7) and give 
a non-negative n 2  from (1.8). 

The coordinates (5, E r, U )  are not uniquely defined by (1.4). Besides the trivial 
change r‘ = r + ro(& E U )  of the origin of the affine parameter, we are free to make the 
transformations 

U )  and m(5, 

which induce the transformations 

PI = F , d ,  P’ = If’IFL’P, n 2 ’ =  FL4n2, 

L’ =f’-’(F,,L - F,,), 
(1.11) 

( m  +iM)’= F i 3  ( m  +iM). 

These transformations can be used to simplify the field equations and/or the solutions 
They show that from the four real functions entering the field equations at least one can 
be prescribed. 

For the vacuum case, we simply have to cancel n 2  in equations (1.8). 
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2. Some remarks concerning known classes of solutions 

So far the problem to find solutions of the field equations (1.7)-(1.8) for pure radiation 
has been attacked in a systematic way along three lines. We will discuss them briefly. 

If the null congruence is non-twisting (0 = O), then by a coordinate transformation 
(1.10) L = X = M = 0 can be achieved, and the field equation (1.7) gives m = m ( u ) .  NO 
further differential equation needs to be satisfied, we must only choose P([,  f, U )  such 
that n2 becomes positive. A well-known example of this class is Vaidya's radiating 
Schwarzschild-metric (Vaidya 195 1). 

Vaidya and co-workers (Vaidya 1974, Vaidya and Pate1 1973) tried to find solutions 
of the Kerr-Schild class, i.e. solutions with a metric tensor of the form g,, = 
qmn + V(x' )k ,k , ,  qmn representing a flat space-time. The emphasis here was on the 
construction of a radiating Kerr metric. 

Hughston (1971) gave a method to generate radiation fields from vacuum by leaving 
P and L fixed but changing the function m. A coupled system of equations for the new 
m has to be solved. Unfortunately, this method has to assume L,, # 0 for the vacuum 
solution to start with, and from all vacuum solutions known so far it can be applied only 
to flat space-time (yielding a non-trivial class of pure radiation fields). 

3. The generation procedure 

The main idea of the procedure proposed in this paper is as follows: As already stated, 
the essential field equation is (1.7), which is the same as in the vacuum case. Suppose 
now that we already have a vacuum (or radiation field) solution which satisfies (1.7). 
Then the easiest way to obtain a (new) radiation field solution is to leave unchanged all 
functions (L,  m,  M )  which enter (1.7), and to change only P to obtain a non-zero or 
changed n2  from (1.8). Equation (1.6) shows that M depends on P, so this trick will 
work only if P is chosen such that M does not change. This condition is in fact a 
differential equation for the function P, but in contrast to the original coupled system 
(1.7) of two differential equations for four real functions we now have to deal only with a 
single differential equation for one real function. This differential equation will become 
linear if certain assumptions for the initial vacuum metric are made. 

Theorem: If (Lo,  Po, mo,  MO) is an algebraically special diverging vacuum or pure 
radiation metric which satisfies (1.4)-( 1.9), then 

0 L = L O ,  M =MO, m = m ,  P =Po,([, U ) ,  (3.1) 

is a pure radiation field exactly if the real function T obeys 

2 ( ~ ~ ) ~ ~ ~ [ a ( x ~ a ~ )  +;i(zoaT) - z0(~ , ,aT  + L,,;,) + M O ( , ~  - 113 = 0, 
(3.2) 

The new solution is twisting if the original one is, i.e. for Zo # 0. It is non-vacuum if (1.8) 
gives a non-zero (positive) n2. 

2i zo = ( P O ) ~ ( S L  - aL), a = a, -La,. 

Proof. The proof of the theorem is simple and achieved by inserting (3.1) into the 
definition (1.6) of M. The differential equation (3.2) for T becomes linear if MO 
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vanishes. All examples given below belong to this class, i.e. they are solutions of 

4. Examples 

(i) Independent of the properties of the initial vacuum solution (with MO = 0) 

T = constant 

is always a solution of (3.3). Unfortunately there seems to be no vacuum solution for 
which [P-3(m+iM)],, is non-zero if M vanishes, so that n2  remains zero and no 
radiation field can be generated. 

(ii) In principle the technique of generation can be applied to the class of vacuum 
solutions characterised by L,, = P,, = ( m  + iM),, = 0, aI # 0. This class has been found 
by Robinson and Robinson (1969) and contains some twisting type I11 solutions 
(Robinson 1975, Held 1974). A simple solution of this kind is 

9 P = (5 + f ) 3 / 2 ,  a real. (4.1) 

= b ( f + 5 ) ( 1 - \ ' 1 3 ) / 2  9 K n z  = b4(27JE-57)(5+f)4-2J'3 (4.2) 

- (J13-5)/2 L = i a ( 5 - f ) ( 5 + 5 )  
A solution T = r(t + r) can be easily constructed, but the corresponding n z  is negative, 

and also T = i b ( l -  f )  leads to a negative n 2  (for 5 + f >  0) .  

(4.3) LO = 1 ( f ) ( ~ O ) - ~ ,  PO = c u l l +  p [ +  p5+ S, m = constant, M O  = 0 ,  

compare Trim and Wainwright (1974) and Debney etal(l969). Explicit radiation field 
solutions, i.e. solutions of the corresponding differential equation for T, have been 
found for several sub-cases. Note that in the case of (4.3) equation (1.8) simply reads 

(4.4) 

(iii) The Kerr-Schild class of vacuum solutions is given by 
0 

~ ' a a % ~ - ~ ~ ( a a ~ ) ( Z Z ~ ) + 3 m ~ a ,  In P = Kn2/2, 

which shows that for T,, # 0, n2  can be made positive by choice of mo for at least some 
region of space-time. 

~ ( u )  = bu, Lo = (c1f2 + czf+  c3)lIZ, Po = 1,  m = constant, M = 0 

If we assume T to be a function only of U we obtain 
0 

6, ci constants, b and c1 real (4.5) 
and 

T ( U )  = bu, LO = - iaOf(po)-' 
(4.6) 

Po = 1 + K5f/2, K = 0 ,  * 1 ,  U' ,  b real constants 

as radiating solutions. In both cases 

~ n ' / 2  = 3mQ/u  (4.7) 
holds, i.e. n2  can be made positive by choice of mo. 

The solution (4.6) with K = 1 is a radiating Kerr metric (asymptotically flat and 
again of the Kerr-Schild class), first given by Kramer (1972) and in transformed 
coordinates by Goodinson (1972). To obtain a more familiar form of this solution we 
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perform a coordinate transformation (1.10) with f = l and F = bu2/2,  which transforms 
P = r P 0  back into Po. The result is 

L = - iafp-', P = 1 + 5f /2 ,  

m = m ' ( 2 b ~ ) - ~ / * ,  a = ~ ~ ( 2 b u ) " ~ .  
(4.8) 

This differs from the Kerr metric exactly by a (special) time ( t )  dependence of the mass 
parameter m and the Kerr parameter a. 

Lo = - iaf(Po)-2,  Po = 1 + K l f / 2 ,  K = 0 ,  f 1, a real, m = constant 

If we assume axial symmetry, then we have to solve 
0 

(4.9) 
(~' l fr ' ) '  + ~ ~ a ~ 5 f ( ~ ~ ) - ~ i i  = 0 ,  7T = 7T(lL U). 

For K = 0 (P = v )  the general solution of (4.9) is a superposition (with different a )  of 

(4.10) 

JO being Bessel functions. For a fixed CY # 0, equation (4.4) shows that n 2  can be made 
positive by choice of mo,  b l ,  b2 and a. 

d l f ,  U )  = (blU + b2)(b3 In l f + b d  

U )  = [b1 exp(au) + b2 exp( - ~~~) I Jo (aa l f ) ,  a f O ,  

For K f 0, besides (4.6) also 

~ ( l f )  = al[ln(K5f/2) - 2 ln(1-  K l f / 2 ) ]  + a2 (4.11) 

is a solution. 
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